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National security demands improved modeling of
atmospheric flow in urban environments

mCFD models are currently appropriate
for sensor-siting studies or post-event
analysis

mComputational shortcuts, like virtual
buildings or simplified atmospheric
conditions, may make CFD appropriate
for emergency-response capabilities if
processor speeds continue to increase

m\When compared with observations of
flow within cities, are CFD results
reasonable?

———» Test with Joint URBAN 2003 data ==
on daytime (IOP3) and nighttime :
(|OP9) releases Keith Meyers, New York Times, 9 May 2005:

chlorine tanks at Ports Elizabeth and Newark,
with Manhattan in the background



LLNL’s crane pseudo-tower provided vertical profiling gy
of high-rate turbulence measurements downwind .

m Top of pseudo-tower Looking north from downtown
anchored to crane; bottom
anchored to a massive weight
to maintain tension and
minimize swaying or twisting

® Sonic anemometers (10 Hz
R. M. Young model 81000)
located at 8 levels, 8 — 83m

Looking east from westside
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Located ~ 750m downwind of the central business
district, the crane profile samples the urban wake

Crane is located at ~ (-200, 1200) m in § N
a domain centered at the south edge of N

downtown (intersection of Broadway

and Sheridan). ~

Eight levels of sonic anemometers provide
10Hz measurements of wind speed and
virtual temperature, allowing estimates of
fluxes and turbulent kinetic energy.

TKE [m2s72]

These contours of TKE at a height of 50 m illustrate
the increased production of TKE in the city center, as
well as the wake induced by buildings too short to
appear in this slice.
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TKE dissipation rate may be estimated from
10Hz sonic anemometer data

®m Inertial dissipation method:
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By using virtual buildings, computational
efficiency can be greatly increased

®m Buildings within the downtown area are resolved>

explicitly 5

m Other buildings are treated as “virtual buildings”:
elements with increased drag that reflects the
height of the buildings

Height in Log10{meters)
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What is the role of buoyant forcing at the
crane location for IOP9?

Height [m]

For the nocturnal IOP, we would expect slight anthropogenic heating into
a slightly-stably-stratified atmosphere, so a model assuming neutral
stability is appropriate.

JD 207 TKE Production budget Observed — l (u' u' + V' V' + W' W')
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Simulation for nocturnal IOP9, with neutral
stability, match observations well.
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Simulation for nocturnal IOP9, with neutral
stability, match observations well.
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What is the role of buoyant forcing at the
crane location for IOP3?

For the daytime IOP, we would expect strong buoyant forcing and strong
mechanical mixing. As FEM3MP assumes neutral stability, the “missing”
buoyant forcing will be unaccounted for in the model. FEM3MP does
capture the shear-generated turbulence well.

JD 188 TKE Production budget Observed — l (u' u'+v'v'+n W')
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Simulation for daytime IOP3, unstable
atmosphere:
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Simulation for daytime IOP3, unstable
atmosphere:

Height [M]
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During both IOPs, TKE dissipation at the
crane is much greater than local production
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m More turbulence is produced within the city center, in the downtown area.

® This urban-core-produced turbulence is advected downwind to dissipate, in the
vicinity of the crane.

® Local production of turbulence at the crane is minimal, due to perhaps one or
two buildings, and so local production and local dissipation are not balanced.



Intercomparison of data and model output
shows:

® The use of virtual buildings (increased surface roughness) may
provide a method for increasing computational efficiency while still
providing high-fidelity simulations downwind

B At a suburban location 750 downwind of the OKC central
business district:

* the role of buoyant forcing is negligible for RANS simulations
during nocturnal conditions, and good agreement between
FEM3MP RANS simulations and observations is found

* for daytime simulations, buoyancy could explain large
discrepancies between FEM3MP predictions and observed
downwind turbulence profiles

m Turbulence closure models which require balance between
turbulence production and dissipation are invalid in the wake of an
urban area
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Dissipation rates modeled in FEM3MP
compare to those observed at the crane

JD 207 at 23.2500 LDT

JD 188 at 11.2500 LDT
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